首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   61篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2015年   37篇
  2014年   29篇
  2013年   43篇
  2012年   21篇
  2011年   26篇
  2010年   32篇
  2009年   29篇
  2008年   19篇
  2007年   24篇
  2006年   25篇
  2005年   25篇
  2004年   25篇
  2003年   19篇
  2002年   17篇
  2001年   17篇
  2000年   11篇
  1999年   12篇
  1998年   14篇
  1997年   15篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   7篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   19篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1972年   1篇
  1971年   2篇
  1967年   3篇
  1966年   4篇
排序方式: 共有607条查询结果,搜索用时 171 毫秒
71.

Background and methods

Human metapneumovirus (hMPV) is a recently discovered respiratory virus associated with bronchiolitis, pneumonia, croup and exacerbations of asthma. Since respiratory viruses are frequently detected in patients with acute exacerbations of COPD (AE-COPD) it was our aim to investigate the frequency of hMPV detection in a prospective cohort of hospitalized patients with AE-COPD compared to patients with stable COPD and to smokers without by means of quantitative real-time RT-PCR.

Results

We analysed nasal lavage and induced sputum of 130 patients with AE-COPD, 65 patients with stable COPD and 34 smokers without COPD. HMPV was detected in 3/130 (2.3%) AE-COPD patients with a mean of 6.5 × 105 viral copies/ml in nasal lavage and 1.88 × 105 viral copies/ml in induced sputum. It was not found in patients with stable COPD or smokers without COPD.

Conclusion

HMPV is only found in a very small number of patients with AE-COPD. However it should be considered as a further possible viral trigger of AE-COPD because asymptomatic carriage is unlikely.  相似文献   
72.
73.
Bacterial spores are surrounded by a morphologically complex, mechanically flexible protein coat, which protects the spore from toxic molecules. The interactions among the over 50 proteins that make up the coat remain poorly understood. We have used cell biological and protein biochemical approaches to identify novel coat proteins in Bacillus subtilis and describe the network of their interactions, in order to understand coat assembly and the molecular basis of its protective functions and mechanical properties. Our analysis characterizes the interactions between 32 coat proteins. This detailed view reveals a complex interaction network. A key feature of the network is the importance of a small subset of proteins that direct the assembly of most of the coat. From an analysis of the network topology, we propose a model in which low-affinity interactions are abundant in the coat and account, to a significant degree, for the coat's mechanical properties as well as structural variation between spores.  相似文献   
74.
The onset of autoimmune diseases is proposed to involve binding promiscuity of antibodies (Abs) and T‐cells, an often reported yet poorly understood phenomenon. Here, we attempt to approach two questions: first, is binding promiscuity a general feature of monoclonal antibodies (mAbs) and second, what is the molecular basis for polyspecificity? To this end, the anti‐cholera toxin peptide 3 (CTP3) mAb TE33 was investigated for polyspecific binding properties. Screening of phage display libraries identified two epitope‐unrelated peptides that specifically bound TE33 with affinities similar to or 100‐fold higher than the wild‐type epitope. Substitutional analyses revealed distinct key residue patterns recognized by the antibody suggesting a unique binding mode for each peptide. A database query with one of the consensus motifs and a subsequent binding study uncovered 45 peptides (derived from heterologous proteins) that bound TE33. To better understand the structural basis of the observed polyspecificity we modeled the new cyclic epitope in complex with TE33. The interactions between this peptide and TE33 suggested by our model are substantially different from the interactions observed in the X‐ray structure of the wild‐type epitope complex. However, the overall binding conformation of the peptides is similar. Together, our results support the theory of a general polyspecific potential of mAbs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
75.
Otte  M. L. 《Annals of botany》2004,94(3):480

Sulphur metabolism of plants (I'll stick with British Englishspelling here) has always received less attention and attractedless funding than has research on nitrogen and phosphorus. Oneof the most important reasons no doubt is that, unlike nitrogenand phosphorus, sulphur availability to plants was rarely aproblem. As the post-World War II use of fertilizer  相似文献   
76.
A flux analysis of glucose metabolism in the filamentous fungus Rhizopus oryzae was achieved using a specific radioactivity curve-matching program, TFLUX. Glycolytic and tricarboxylic acid cycle intermediates labeled through the addition of extracellular [U-14C]glucose were isolated and purified for specific radioactivity determinations. This information, together with pool sizes and the rates of glucose utilization and end product production, provided input for flux maps of the metabolic network under two different experimental conditions. Based upon the flux analysis of this system, a mutant of R. oryzae with higher lactate and lower ethanol yields than the parent was sought for and found.  相似文献   
77.
In Drosophila melanogaster, the Polycomb-group (PcG) and trithorax-group (trxG) genes have been identified as repressors and activators, respectively, of gene expression. Both groups of genes are required for the stable transmission of gene expression patterns to progeny cells throughout development. Several lines of evidence suggest a functional interaction between the PcG and trxG proteins. For example, genetic evidence indicates that the enhancer of zeste [E(z)] gene can be considered both a PcG and a trxG gene. To better understand the molecular interactions in which the E(z) protein is involved, we performed a two-hybrid screen with Enx1/EZH2, a mammalian homolog of E(z), as the target. We report the identification of the human EED protein, which interacts with Enx1/EZH2. EED is the human homolog of eed, a murine PcG gene which has extensive homology with the Drosophila PcG gene extra sex combs (esc). Enx1/EZH2 and EED coimmunoprecipitate, indicating that they also interact in vivo. However, Enx1/EZH2 and EED do not coimmunoprecipitate with other human PcG proteins, such as HPC2 and BMI1. Furthermore, unlike HPC2 and BMI1, which colocalize in nuclear domains of U-2 OS osteosarcoma cells, Enx1/EZH2 and EED do not colocalize with HPC2 or BMI1. Our findings indicate that Enx1/EZH2 and EED are members of a class of PcG proteins that is distinct from previously described human PcG proteins.In Drosophila melanogaster, the genes of the Polycomb group (PcG) and trithorax group (trxG) are part of a cellular memory system, which is responsible for the stable inheritance of gene activity. The PcG and trxG genes have been identified in Drosophila as repressors (PcG) (18, 22, 27, 28, 38) and activators (trxG) (20, 21), respectively, of homeotic gene activity. PcG and trxG genes were originally found in Drosophila, but mammalian homologs have also been identified and appear to function like their Drosophila homologs (reviewed in reference 37). It has been proposed that PcG proteins repress gene expression through the formation of multimeric protein complexes. We have recently shown that the human PcG proteins HPH1 and HPH2 coimmunoprecipitate, cofractionate, and colocalize in nuclear domains with the human PcG proteins BMI1 (2, 12, 33) and HPC2, a recently identified, novel human Polycomb protein (33, 34). Furthermore, we have found that the human RING1 protein coimmunoprecipitates and colocalizes with HPC2 and other PcG proteins, indicating that RING1 is associated with, or is part of, the mammalian PcG complex (33, 35). These results indicate that mammalian PcG proteins form a multimeric protein complex. This observation is in agreement with observations that different PcG proteins, including Pc, bind in overlapping patterns on polytene chromosomes in Drosophila salivary gland cells (4, 10, 29).Interestingly, also the trithorax gene product trx colocalizes with Drosophila PcG proteins at many sites on polytene chromosomes (6, 24). Even more strikingly, binding of the trx protein has been mapped to small DNA fragments that also contain binding sites for PcG proteins, the Polycomb response elements (5, 6). This finding is further substantiated by the observation that GAGA factor, the gene product of the trxG gene trithorax-like (Trl) (13), colocalizes with Pc protein within the close vicinity of a Polycomb response element (41). Furthermore, the PcG gene Enhancer of zeste [E(z)] contains a domain with sequence homology with the activator protein trx (17). This observation is in agreement with genetic data which indicate that E(z) can be considered both a PcG gene and a trxG gene (26). Double mutations of E(z) and trxG genes result in homeotic phenotypes which are similar to the homeotic phenotypes which are also observed in double mutants of trxG genes (26). Finally, polytene chromosome binding of the trx protein is strongly reduced in homozygous E(z) mutants (4), and vice versa, polytene chromosome binding of the E(z) protein is reduced in trx mutants (24). These data suggest functional interactions between activators (trxG proteins) and repressors (PcG proteins) that are important for their mode of action.To start to investigate these puzzling features of the E(z) gene product, we used the two-hybrid system (8, 9) in order to identify proteins that interact with a mammalian homolog of E(z), the Enx1/EZH2 protein (15, 16). Here, we report the identification of the human EED protein, which interacts with Enx1/EZH2. EED is the human homolog of eed, a murine PcG gene (7, 36) which has extensive homology with the Drosophila PcG gene extra sex combs (esc) (14, 32, 39). Whereas Enx1/EZH2 and EED coimmunoprecipitate, they neither coimmunoprecipitate nor colocalize with other human PcG proteins, such as HPC2 and BMI1. Our findings indicate that both Enx1/EZH2 and EED form a class of mammalian PcG proteins that is distinct from previously described human PcG proteins.  相似文献   
78.
79.
L-Lactate dehydrogenase (L-LDH, E.C. 1.1.1.27) is encoded by two or three loci in all vertebrates examined, with the exception of lampreys, which have a single LDH locus. Biochemical characterizations of LDH proteins have suggested that a gene duplication early in vertebrate evolution gave rise to Ldh-A and Ldh-B and that an additional locus, Ldh-C arose in a number of lineages more recently. Although some phylogenetic studies of LDH protein sequences have supported this pattern of gene duplication, others have contradicted it. In particular, a number of studies have suggested that Ldh-C represents the earliest divergence among vertebrate LDHs and that it may have diverged from the other loci well before the origin of vertebrates. Such hypotheses make explicit statements about the relationship of vertebrate and invertebrate LDHs, but to date, no closely related invertebrate LDH sequences have been available for comparison. We have attempted to provide further data on the timing of gene duplications leading to multiple vertebrate LDHs by determining the cDNA sequence of the LDH of the tunicate Styela plicata. Phylogenetic analyses of this and other LDH sequences provide strong support for the duplications giving rise to multiple vertebrate LDHs having occurred after vertebrates diverged from tunicates. The timing of these LDH duplications is consistent with data from a number of other gene families suggesting widespread gene duplication near the origin of vertebrates. With respect to the relationships among vertebrate LDHs, our data are not consistent with previous claims that Ldh-C represented the earliest divergence. However, the precise relationships among some of the main lineages of vertebrate LDHs were not resolved in our analyses.   相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号